

World Underwater Federation

Lesson 1

P

World Underwater Federation

Basic physics

World Underwater Federation

TORRICELLI Athmospheric P + Hydrostatic P BSOLUTE P

Atmospheric

P Hydrostotic 1 atm 1,01 bar 760 mm Hg 1.033 mBar 1 Kg/cm²

CHARLES

The pressure that a gas exerts on the walls of its container is determined by the momentum of the atoms and molecules of the gas, which in turn is determined by the temperature. As the temperature increases the atoms and molecules move faster, and so exert a greater pressure on the walls. If the walls are rigid, such that the volume of the container is held constant, then the relationship between pressure P and temperature T is given by Charles' Law:

World Underwater Federation

PASCAL

If pressure is applied to a non-flowing fluid in a container, the pressure is transmitted equally in all directions within the container

A body immersed in water will receive an upthrust equal to the weight of water it displaces

World Underwater Federation

Buoyancy

World Underwater Federation

Boyle and Mariotte

AIR 1 0 Mt 1 Atm AIR 1/2 10 M† 2 Atm AIR 3 Atm 20 Mt 4115 4 Atm 30 M† 5 Atm 40 Mt

For a fixed mass of gas, at constant temperature, the pressure is inversely proportional to the volume

World Underwater Federation

Respiratory system

World Underwater Federation

Effects of pressure Gas embolism

GAS EMBOLISM

SUBCUTANEOUS EMPHYSEMA

MEDIASTINAL EMPHYSEMA

PNEUMOTHORAX

World Underwater Federation

Air composition

World Underwater Federation

Air composition

World Underwater Federation

Dalton

The total pressure exerted by a mixture of gases is equal to the sum of the partial pressures of the gases that compose the mixture

		%	PP	
Nitrogen		78	0,78	
Oxygen		20	0,20	AT SEA LEVEL
Carbon Dioxide		0,04	0,0004	- 1 hom
Hydrogen		1	0,01	I lot I Dar
Other gases	1	0,01		

World Underwater Federation

The total pressure exerted by a mixture of gases is equal to the sum of the partial press<mark>ures o</mark>f the gases that compose the mixture

World Underwater Federation

Henry

The amount of a gas that will dissolve in a liquid is directly proportional at the pressure of the gas that is in contact with the liquid

World Underwater Federation

Effects of pressure **Decompression sickness** SHFNRY Higher bas in Internal solution pressure

World Underwater Federation

Effects of pressure Decompression sickness HFNRY GASD External Internal pressure pressure

World Underwater Federation

Effects of pressure Decompression sickness Which affects

The joints

The skin

The spinal cord

World Underwater Federation

S.C.U.B.A. equipment

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator

A.A.S.

B.C.D.

USE CHOICE MODELS MATERIALS CARRIAGE TEST MAINTENANCE

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator

A.A.S.

B.C.D.

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator

A.A.S.

B.C.D.

World Underwater Federation

Tank

Regulator

A.A.S.

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator

A.A.S.

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator

A.A.S.

B.C.D.

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator First Stage A.A.S.

B.*C*.D.

NOT BALANCED PISTON

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator First Stage A.A.S.

B.C.D.

World Underwater Federation

S.C.U.B.A. equipment

BALANCED DIAPHRAGM

Tank

B.C.D.

Regulator First Stage A.A.S. Spring HP Poppet LP Piston Spring Spring Diaphragm

k

Filter

World Underwater Federation

S.C.U.B.A. equipment

Tank

B.C.D.

Regulator Second Stage A.A.S.

World Underwater Federation

S.C.U.B.A. equipment

Servoassistito

Tank

B.C.D.

Regulator Second Stage A.A.S.

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator

A.A.S.

World Underwater Federation

S.C.U.B.A. equipment

Tank

Regulator

A.A.S.

World Underwater Federation

World Underwater Federation

Lesson 2

World Underwater Federation

Nitrogen and The human body

World Underwater Federation

Nitrogen and the human body

P

World Underwater Federation

Haldane's principles

Haldane's principles

Division of the tissues into classes

- Speed of absorption and release (half-
- saturation times)
- The 2/1 ratio

Decompression can start with a sharp drop in ambient pressure

World Underwater Federation

Haldane's principles Division of the tissues into classes

FAST TISSUES BLOOD BRAIN SLOW TISSUES FAT BONE

P

World Underwater Federation

Haldane's principles

World Underwater Federation

World Underwater Federation

World Underwater Federation

Adaptations of haldane's model

P

World Underwater Federation

Adaptations of haldane's model AN INCREASE IN THE NUMBER OF THEORETICAL COMPARTMENTS

Haldane USNavy Buhlmann Computer

World Underwater Federation

Adaptations of haldane's model

THE CRITICAL OVERPRESSURE RATIO

HALDANE2:1FAST TISSUES3:1SLOW TISSUES1,5:1"M VALUE"DIVE TABLESALGORITHMS ON THE DIVE COMPUTER

World Underwater Federation

Adaptations of haldane's model NITROGEN ABSOPTION AND RELEASE TIMES

In contrast to Haldane's findings, tissues have different nitrogen absorption and release times. It has been seen that these times are influenced by many factors that can result in substantial differences

World Underwater Federation

Adaptations of haldane's model

NITROGEN IN THE BODY

Haldane, with the means available to him at the time, did not have the possibility of verifying if there was nitrogen present in the body in the form of gassy micro-bubbles even after a dive that adhered to the tables. These micro-bubbles, being of a size that they could be handled without problems, and therefore without symptoms, they were not noted until the development of the Doppler system, which is able to record their presence, size and quantity in the body.

World Underwater Federation

Adaptations of haldane's model

ASCENT SPEED

The maximum ascent speed is given by the maximum overpressure ratio. Therefore, this can vary with variations in the initial depth. In fact, the pressure differential is different between 30 and 20 m from that of 10m from the surface. However this calculation can only be worked out by the dive computer. Using the tables we must unquestionably follow the indicated maximum limit

World Underwater Federation

Dive tables

World Underwater Federation

Dive tables Terminology

Dive tables Tables

		3		6		9		12		18		24		30		36		42				DEPTH			
			4,5		7,5		10,5		15		21		27		33		39		45			(me	tres)	,	
	Α	60	35	25	20	15	5	5												Α				0:10	
	B	120	70	50	25	20	45	45	10	10	5	5	5	5						B			0:10	2:11	
	В	120	70	50	- 35	30	15	15	10	10	3	5	5	5						В		0:10	2:10	2:50	
	С	210	110	75	55	45	25	25	15	15	10	10	10	7	5	5	5	5	5	С		1:39	2:49	12:00	
Ь	D	300	160	100	75	60	40	30	25	20	15	15	12	10	10	10	8	7		D	0:10	1:10 2:38	2:39 5:48	5:49 12:00	
N	E		225	135	100	75	50	40	30	25	20	20	15	15	13	12	10	10	E	0:10	0:55	1:58	3:23	6:33	
8	-		250	400	405	05	60	FO	40	20	20	25	20	20	4 5	4.5			0:10	0:54	1:30	2:29	3:58	7:06	
9	F		350	180	125	95	60	50	40	30	30	25	20	20	15	15		0:10	0:45	1:29	2:28	3:57	7:05	12:00	
R	G			240	160	120	80	70	50	40	35	30	25	22	20		G	0:40	1:15	1:59	2:58	4:25	7:35	12:00	
ш	н			325	195	145	100	80	60	50	40	35	30	25		н	0:10	0:37	1:07	1:42	2:24	3:21	4:50	8:00	
		520		245	170	120	100	70	EE	45	40				0:10	0:34	1:00	1:30	2:03	2:45	3:44	5:13	8:22		
щ	•			245	170	120	100	70	- 55	43	40			0:10	0:33	0:59	1:29	2:02	2:44	3:43	5:12	8:21	12:00		
_	J	31			315	205	140	110	80	60	50			J	0:31	0:54	1:19	1:47	2:20	3:04	4:02	5:40	8:40	12:00	
	к	2				250	160	130	90				ĸ	0:10	0:29	0:50	1:12	1:36	2:04	2:39	3:22	4:20	5:49	8:59	
0					240	400	450	400				0:10	0:28	0:49	1:05	1:35	1:50	2:38	2:54	3:37	4:36	6:03	9:13		
	L					310	190	150	100			L	0:26	0:45	1:04	1:25	1:49	2:19	2:53	3:36	4:35	6:02	9:12	12:00	
	м						220	170			M	0:10	0:26	0:43	1:00	1:19	1:40	2:06	2:35	3:09	3:53	4:50	6:19	9:29	
	N						270	200		N	0:10	0:25	0:40	0:55	1:12	1:31	1:54	2:19	2:48	3:23	4:05	5:04	6:33	9:44	
	14						210	200		0.10	0:24	0:39	0:54	1:11	1:30	1:53	2:18	2:47	3:22	4:04	5:03	6:32	9:43	12:00	
	ο						310		0	0:23	0:36	0:51	1:07	1:24	1:43	2:04	2:29	2:59	3:33	4:17	5:16	6:44	9:54	12:00	
N	EW D	IVE L	ETTE	R GR	OUP					ο	Ν	м	L	κ	J	1	н	G	F	Е	D	С	в	Α	
						Ŧ			12	241	213	187	161	138	116	101	87	73	61	49	37	25	17	7	
		BASE	ED ON			PT .			15	160	142	124	111	99	87	76	66	56	47	38	29	21	13	6	
	- 1	151	ΝΔΙΛ	v		B			18	117	107	97	88	79	70	61	52	44	36	30	24	17	11	5	
							21	96	87	80	72	64	57	50	43	37	31	26	20	15	9	4			
			ADLE	5		et C			24	80	73	68	61	54	48	43	38	32	28	23	18	13	8	4	
			VOTO			ΞĒ			27	70	64	58	53	47	43	38	33	29	24	20	16	11	1	3	
	5	AFEI	1 510	P					30	62	57	52	48	43	38	34	30	26	22	18	14	10	1	3	
		3mt/	3mir	1		E			33	50	21	4/	92	35	34	31	21	24	20	16	13	10	6	3	
				-		8			39	44	40	38	35	33	28	20	23	19	16	13	11	8	6	3	

World Underwater Federation

World Underwater Federation

Examples End of dive letter group

World Underwater Federation

World Underwater Federation

World Underwater Federation

	12		18		24		30		36		42	
10,5	B	15		21		27		33		39		
5	Ð											
15	15	10	10	5	5	5	5					
25	25	15	15	10	10	10	7	5	5	5	5	
40	30	25	20	15	15	12	10	10	10	8	7	
50	40	30	25	20	20	15	15	13	12	10	10	
60	50	40	30	30	25	20	20	15	15		F	4
80	70	50	40	35	30	25	22	20		G	0:18	1

World Underwater Federation

World Underwater Federation

	12		18		24	_	30		206		42	
					2.4		00		00			
10,5		15		21		27		33		39		-
5	4											
15	-18	10	10	5	5	5	5					
25	2!	15	15	10	10	10	7	5	5	5	5	
40	- 3(25	20	15	15	12	10	10	10	8	7	
50	40		25	20	20	15	15	13	12	10	10	
60	5	40	30	30	25	20	20	15	15		F	4
80	7.		40	35	30	25	22	20		G	0.18	1

World Underwater Federation

World Underwater Federation

	12		18		24		30		36		42	
10,5		15		21		27		33		39		
5	4											
15	-18	10	10	5	5	5	5					
25	25	15	15	10	10	10	7	5	5	5	5	
40	- 3(25	20	15	15	12	10	10	10	8	7	
50	40		95	20	20	45	15	12	10	10		
60	R.	40	30	30	25	20	20	15	15		F	K
80	74		40	35	30	25	22	20		G		

World Underwater Federation

World Underwater Federation

Examples

Decompression stops

World Underwater Federation

Dive tables Tables

Mt.	Min	9	6	3	Gr		Mt.	Min	9	6	3		Gr		Mt.	Min	9	6	3	Gr	
12	210			2	N		27	40			7	2	J	11	39	15			1	F	
	230			7	N			50			18		L	Ш		20			4	н	
	250			11	0			60			25		M			25			10	J	
15	110			3	L			70		7	30		N			30		3	18	Μ	
	120			5	M			80		13	40		N			40		10	25	Ν	
	140			10	M		30	30			3		1	Ш		50	3	21	37	0	
	160			21	N			40			15		ĸ	Ш	42	15			2	G	
18	70			2	ĸ			50		2	24		L	Ш		20			6	1	
	80			7	L			60		9	28		N	Ш		25		2	14	J	
	100			14	M			70		17	39		0	Ш		30		5	21	κ	
	120			26	N			80		23	48		0	Ш		40	2	16	26	Ν	
21	60			8	ĸ		33	25			3		н	Ш	45	10			1	E	
	70			14	L		_	30			7		J			15			3	G	
	80			18	M			40		2	21		L			20		2	7	н	
	90			23	N			50		8	26		M	Ш		25		4	17	κ	
	100			33	N			60		18	36		M	11		30		8	24	L	
24	50			10	ĸ		36	20			2		н	11	1	40	5	19	33	N	
	60			17	L			25			6		1	Т							
	70			23	M			30			14	6	J	11							
	80		2	31	N	_		40		5	25		L	11							
	90		7	39	N			50		15	31		N	11							

World Underwater Federation

Dive tables Tables

Depth

World Underwater Federation

Dive tables Tables

World Underwater Federation

Dive tables Tables

Stop depth

World Underwater Federation

Dive tables Tables

World Underwater Federation

Dive tables Tables

World Underwater Federation

World Underwater Federation

World Underwater Federation

	12		18		24		30		36		42		
10,5		15		21		27		33		39			
5	5												
15	15	10	10	5	5	5	5						
25	25	15	15	10	10	10	7	5	5	5	5		
40	30	25	20	15	15	12	10	10	10	8	7		
50	40	30	25	20	20	15	15	13	12	10	10		
60	50	40	30	30	25	20	20	15	15		F	4	
80	70	50	40	35	30	25	22	20		G	0.18		

World Underwater Federation

World Underwater Federation

	12		18		24		30		36		42	
10,5		15		21		27	B	33		39		
5	5											
15	15	10	10	5	5	5						
25	25	15	15	10	10	10		5	5	5	5	
40	30	25	20	15	15	12	1	10	10	8	7	
50	40	30	25	20	20	15	1	13	12	10	10	
60	50	40	30	30	25	20	2		15		F	4
80	70	50	40	35	30	25		20		G	0:18 0:48	1
100	80	60	50	40	35	30	2		F H	8:10	0.07	3

World Underwater Federation

World Underwater Federation

World Underwater Federation

World Underwater Federation

+

Examples

Stops time Ascent time

Total ascent time

2

23

25

World Underwater Federation

World Underwater Federation

Deep dive

World Underwater Federation

Deep dive PLANNING A DEEP DIVE CONTROL EQUIPMENT INSTRUMENTATION PLANNING SUPPORT BOAT WEIGHT BELT

World Underwater Federation

Deep dive DIVE TO AVOID

World Underwater Federation

Deep dive BREATHING RYTHM

P

World Underwater Federation

Air consumption

World Underwater Federation

Air consumption

TO BE CONSIDERED Quantity of air in the cylinder

TO BE PLANNING Dive time Dive depth

World Underwater Federation

Air consumption

The quantity of air in a cylinder Cilinder capacity × Loading pressure

Consumption in litres

20 x Ambient pressure x Dive time

Autonomy time in minutes

Volume of the air in the cilinder 20 x Ambient pressure

World Underwater Federation

Dive computer

World Underwater Federation

Dive computer

World Underwater Federation

Dive computer

World Underwater Federation

Dive computer

World Underwater Federation

Dive computer CALCULATING A MULTILEVEL DIVE HOW THE COMPUTER WORKS

THE THEORETICAL COMPARTMENTS AND THE HALF-SATURATION TIMES

Tables vs COMPUTER

World Underwater Federation

Dive computer

Always refer to the handbook of instructions before using the instrument

EVERY COMPUTER HAS ITS OWN CHARACTERISTICS

World Underwater Federation

Dive computer

Every diver must have his own computer

TWO DIVERS HAVE ALWAYS A DIFFERENT DIVE PROFILE

World Underwater Federation

Dive computer

Always respect the ascent rate

World Underwater Federation

Dive computer

The maximum depth must be reached at the beginning of the dive

AVOID A YO-YO DIVE

World Underwater Federation

Dive computer

Never make a comparison with the tables

OR USE THE TABLES OR THE COMPUTER

NEVER MIX THEM

World Underwater Federation

Dive computer FLYING AFTER ADIVE

Wait at least 12 hours if safe dives have been carried out in the last 2 days for a total time of less than 120 minutes

> Wait at least 24 hours after repeated dives

Wait between 24 and 48 hours after dives outside the safety limit

World Underwater Federation

World Underwater Federation

Lesson 3

World Underwater Federation

In collaboration with

World Underwater Federation

<u>BLS - Basic Life Support</u>

First Aid principles

World Underwater Federation

World Underwater Federation

BLS

CALL FOR HELP

ALLERT EMERGENCY SERVICES

World Underwater Federation

World Underwater Federation

BLS

THE VICTIM ALLERT EMERGENCY SERVICES

World Underwater Federation

ORAL CAVITY INSPECTION

HEAD HYPEREXTENSION

LATERAL SAFETY POSITION

ALLERT EMERGENCY SERVICES

BLS

World Underwater Federation

Lesson II

World Underwater Federation

BLS

World Underwater Federation

BLS

World Underwater Federation

BLS LOOK - LISTEN - FEEL

World Underwater Federation

BLS

THE VICTIM UNTIL EMERGENCY SERVICES ARRIVE

World Underwater Federation

BLS

World Underwater Federation

World Underwater Federation

BLS

World Underwater Federation

World Underwater Federation

First aid A TRAUMA CAN AFFECT SKIN MUSCLES ARTICULATION BONES **BLOOD VESSELS**

 \bullet

Lesson II

World Underwater Federation

First aid

Burns

Bruise

Scratching

World Underwater Federation

First aid MUSCLES

Strain

Contusion

World Underwater Federation

First aid ARTICOLATION

Sprain

Dislocation

World Underwater Federation

First aid BONES

Fracture

World Underwater Federation

First aid BLOOD VESSELS

Haemorrage

venous

arterial

World Underwater Federation

World Underwater Federation

Lesson 4

World Underwater Federation

World Underwater Federation

Pay attention to main features

World Underwater Federation

Location of the boat

World Underwater Federation

Current direction

World Underwater Federation

Waves direction

World Underwater Federation

Location of the boat, referring to the sun

World Underwater Federation

Boat's econometer

World Underwater Federation

Effective use of environmental features

World Underwater Federation

World Underwater Federation

Current direction

Boat shadow

World Underwater Federation

Orientation referring to the sun and the waves

World Underwater Federation

Sand ripples

Depth

P

World Underwater Federation

Instrumental orientation

World Underwater Federation

The compass

World Underwater Federation

The compass

World Underwater Federation

The compass

World Underwater Federation

The compass

180°

Lesson VI

World Underwater Federation

The compass

World Underwater Federation

Position fix

World Underwater Federation

How calculate distances

World Underwater Federation

Course

World Underwater Federation

Limited visibility dive

World Underwater Federation

Limited visibility dive

EQUIPMENT CHOOSE A DIVE SITE **DIVE PLANNING** PREPARE THE EQUIPMENT SAFETY PROCEDURES DIVE SIGNALS EQUIPMENT MAINTENANCE

World Underwater Federation

Limited visibility dive

World Underwater Federation

Limited visibility dive

World Underwater Federation

Limited visibility dive

DIVE PLANNING

		3		6		9		12		18		24		30		36		42				DE	РТН	
			4,5		7,5		10,5		15		21		27		33		39		45			(me	tres))
	Α	60	35	25	20	15	5	5												Α				0:10
	в	120	70	50	35	30	15	15	10	10	5	5	5	5						в			0:10	2:11
	-	210	110	75	55	45	25	25	15	15	10	10	10	7	5	5	5	5	5	-		0:10	1:40	2:50
	<u> </u>	200	100	100	75	40	20	20	25	20	10	45	10	40	10	10		7	3	č	0:10	1:39	2:49	12:00
9	D	300	160	100	/5	60	40	30	25	20	15	15	12	10	10	10	8	1		0:10	1:09	2:38	5:48	12:00
0	E		225	135	100	75	50	40	30	25	20	20	15	15	13	12	10	10	E	0:54	1:57	3:22	6:32	12:00
Ж	F		350	180	125	95	60	50	40	30	30	25	20	20	15	15		F	0:10 0:45	0:46	1:30 2:28	2:29 3:57	3:58	7:06
~	G			240	160	120	80	70	50	40	35	30	25	22	20		G	0:10	0:41	1:16	2:00	2:59	4:26:	7:36
Η̈́	ц			325	105	145	100	80	60	50	40	35	30	25		н	0:10	0:37	1:07	1:42	2:36	3:21	4:50	8:00
	-			525	195	145	100	00	00	50	40	35	- 50	20		0:10	0:36	1:06	1:41	2:23	3:20	4:49	7:59	12:00
Ξ	1				245	170	120	100	70	55	45	40			I	0:33	0:59	1:29	2:02	2:44	3:43	5:12	8:21	12:00
	J				315	205	140	110	80	60	50			J	0:10	0:32	0:55	1:20	1:48	2:21 3:04	3:05 4:02	4:03 5:40	5:41 8:40	8:41
5	к					250	160	130	90				к	0:10	0:29	0:50	1:12	1:36	2:04	2:39	3:22	4:20	5:49	8:59
5						200	100	100	100				0:10	0:28	0:49	1:11	1:35	2:03	2:38	3:21	4:19	5:48	8:58	9:13
-	L					310	190	150	100			L	0:26	0:45	1:04	1:25	1:49	2:19	2:53	3:36	4:35	6:02	9:12	12:00
	м						220	170			M	0:10	0:26	0:43	1:00	1:19	1:40	2:06	2:35	3:09	3:53	4:50	6:19 9:28	9:29
	N						270	200		N	0:10	0:25	0:40	0:55	1:12	1:31	1:54	2:19	2:48	3:23	4:05	5:04	6:33	9:44
	0						240		0	0:10	0:24	0:39	0:54	1:11	1:30	1:53	2:18	2:47	3:22	3:34	4:18	5:17	9:43	9:55
	0						310		0	0:23	0:36	0:51	1:07	1:24	1:43	2:04	2:29	2:59	3:33	4:17	5:16	6:44	9:54	12:00
N	EW D	IVEL	ETTE	R GR	OUP					0	Ν	м	L	κ	J		н	G	F	E	D	С	в	Α
			-			Ξ			12	241	213	187	161	138	116	101	87	73	61	49	37	25	17	7
	BASED ON					15	160	142	124	111	99 70	87	76	66	56	47	38	29	21	13	6			
U.S. NAVY						21	96	87	9/ 80	72	64	57	50	43	37	30	26	29	15	9				
DIVE TABLES 🗧 🖉							24	80	73	68	61	54	48	43	38	32	28	23	18	13	8	4		
a C							27	70	64	58	53	47	43	38	33	29	24	20	16	11	7	3		
SAFETY STOP					Ē			30	62	57	52	48	43	38	34	30	26	22	18	14	10	7	3	
3mt/3min					Ε			33	55	51	47	42	38	34	31	27	24	20	16	13	10	6	3	
			•			R			36	50	45	43	39	35	32	28	25	21	18	15	12	9	6	3
									- 39	- 44	40	- 30	ು	31	: ∠0	40	- 22	19	10	13	11	0	0	1 3

World Underwater Federation

Limited visibility dive PREPARE THE EQUIPMENT

DRESSING ORDER

BUDDY CHECK

EQUIPMENT POSITIONING

World Underwater Federation

Limited visibility dive

SAFETY PROCEDURES

World Underwater Federation

Limited visibility dive

Something wrong

World Underwater Federation

Dry suits MATERIALS SEALS VALVES UNDERSUIT

World Underwater Federation

Dry suits MATERIALS NEOPRENE **CRASHED NEOPRENE VULCANIZED RUBBER ON FABRIC** TRILAMINATE POLYURETHANE

World Underwater Federation

Dry suits SEALS

WRISTS AND NECK IN NEOPRENE OR LATEX WATER TIGHT BRONZE ZIP RUBBER BOOTS HOOD

World Underwater Federation

OUTLET VALVE

INLET VALVE

QUICK DISCONNET HOSE

World Underwater Federation

Dry suits PUTTING ON DRY SUIT ENTERING THE WATER BUOYANCY CONTROL ASCENT RATE MAINTENANCE

World Underwater Federation

Dry suits EMERGENCY PROCEDURES **INVERTED POSITION INTLET VALVE OUTLET VALVE DRY SUIT FLOODS**

World Underwater Federation

Diving at altitude

TO BE CONSIDERED DIVING SITE ALTITUDE

TO BE PLANNING TIME SPENT AT THE ALTITUDE OF THE DIVE SITE BEFORE DIVING PLANNED DIVE TIME PLANNED DIVE DEPTH

World Underwater Federation

Diving at altitude

2.500 m	t -	0,75	Atm	п
2.000 m	1t -	0,78	Atm	
1.500 m	nt -	0,83	Atm	
1.000 m	nt -	0,88	Atm	
0 m	nt -	1	Atm	
10 m	nt -	2	Atm	-
20 m	nt -	3	Atm	1
30 m	nt -	4	Atm	1
40 m	nt -	5	Atm	

mt S.L.M.	P Atm	Coeff.
0	1,000	1,0
100	0,988	1,0
200	0,976	1,0
300	0,964	1,0
400	0,952	1,0
500	0,940	1,0
600	0,928	1,0
700	0,918	1,1
800	0,907	1,1
900	0,897	1,1
1000	0,886	1,1
1100	0,877	1,1
1200	0,865	1,1
1300	0,855	1,1
4.400	0.044	Contraction of the

World Underwater Federation

Diving at altitude planning

МТ	ADJUSTEMENT COEFFICIENT													
1111	1,9	1,8	1,7	1,6	1,5	1,4	1,3	1,2	1,1					
12	213	161	138	101	87	61	49	25	17					
15	142	111	99	76	66	47	38	21	13					
18	107	88	79	61	52	36	30	17	11					
21	87	72	64	50	43	31	26	15	9					
24	73	61	54	43	38	28	23	13	8					
27	64	53	47	38	33	24	20	11	7					
30	57	48	43	34	30	22	18	10	7					
33	51	42	38	31	27	20	16	10	6					
36	46	39	35	28	25	18	15	9	6					
39	40	35	31	25	22	16	13	8	6					
	MINUTES OF PENALIZATION													

World Underwater Federation

Diving at altitude planning

World Underwater Federation

Diving in current EQUIPMENT CHOOSE A DIVE SITE **DIVE PLANNING** PREPARE THE EQUIPMENT ENTER IN WATER SAFETY PROCEDURES DIVE SIGNALS EQUIPMENT MAINTENANCE

World Underwater Federation

Diving in current

World Underwater Federation

P

Diving in current

World Underwater Federation

Dives in fresh water and /or very cold water

Ρ

World Underwater Federation

Dives in fresh water and /or very cold water

